
Active Cleaning of Label Noise

Rajmadhan Ekambarama,∗, Sergiy Fefilatyeva, Matthew Shrevea, Kurt
Kramera, Lawrence O. Halla, Dmitry B. Goldgofa, Rangachar Kasturia

aDepartment of Computer Science and Engineering, University of South Florida, Tampa,
FL 33620-5399, USA

Abstract

Mislabeled examples in the training data can severely affect the performance

of supervised classifiers. In this paper, we present an approach to remove any

mislabeled examples in the dataset by selecting suspicious examples as targets

for inspection. We show that the large margin and soft margin principles used

in support vector machines (SVM) have the characteristic of capturing the mis-

labeled examples as support vectors. Experimental results on two character

recognition datasets show that one-class and two-class SVMs are able to cap-

ture around 85% and 99% of label noise examples, respectively, as their support

vectors. We propose another new method that iteratively builds two-class SVM

classifiers on the non-support vector examples from the training data followed

by an expert manually verifying the support vectors based on their classifi-

cation score to identify any mislabeled examples. We show that this method

reduces the number of examples to be reviewed, as well as the parameter inde-

pendence of this method, through experimental results on four data sets. So,

by (re-)examining the labels of the selective support vectors, most noise can be

removed. This can be quite advantageous when rapidly building a labeled data

set.

Keywords: Support Vectors, Label noise, Mislabeled examples

∗Corresponding author
Email addresses: rajmadhan@mail.usf.edu (Rajmadhan Ekambaram),

sfefilatyev@gmail.com (Sergiy Fefilatyev), mshreve@mail.usf.edu (Matthew Shreve),
kurtkramer@gmail.com (Kurt Kramer), hall@cse.usf.edu (Lawrence O. Hall),
goldgof@cse.usf.edu (Dmitry B. Goldgof), r1k@cse.usf.edu (Rangachar Kasturi)

Preprint submitted to Pattern Recognition October 1, 2015

1. Introduction

Mislabeled examples in the training data perturb the learning process and

are likely to have an adverse effect on the accuracy of a classifier. Label noise

can best be examined while an expert is available to label the data. In this

paper, we present a procedure for correcting training data that contains label5

noise. In particular, we investigate finding mislabeled examples using support

vector machines (SVM) [1, 2, 3]. This work was motivated by a search for

oil-droplet particles in images from underwater platform in the aftermath of

Deepwater Horizon Oil Spill. In the search for underwater oil-droplets a new

class (actually suspected fish eggs) was found, but because it was a new class,10

examples were mislabeled. In this case, it was very important to find all “oil

droplets”. The presence of mislabeled examples in the training data is a critical

problem and several approaches have been proposed in the literature [4, 5, 6,

7, 8, 9, 10, 11, 12, 13] to address it. No approach, to our knowledge, focuses

solely on the support vectors of a SVM classifier to address this problem. In our15

previous work [14], we hypothesized that if examples in the training data were

erroneously labeled they will tend to be on the margin and get chosen as support

vectors of the SVM classifier. In this work, we extend the approach to reduce the

number of examples to be reviewed and provide extensive experimental results

to demonstrate the validity of the hypothesis. We note that our work is not20

limited to images. It is also the case that we ignore noise in images, which has

been dealt with in many places [15].

We did two sets of experiments to remove the label noise examples. The

first set of experiments showed that around 85% and 99% of the label noise

examples were selected as support vectors of one-class SVM (OCSVM) and25

two-class SVM (TCSVM) respectively. In these experiments we also found that

large numbers of training examples (around 55% for OCSVM and between 42%

and 46% for TCSVM) were selected as support vectors. This leads to reviewing

more than 40% of the examples to remove 10% of noise examples. Motivated

by the results shown in [6], we rank ordered the support vector of TCSVM30

2

examples based on their class probability. This method showed that most of

the label noise examples have low probability for the class to which they are

assigned. But we found three problems with this approach: 1) dependency on

classifier parameters, 2) the need for the selection of the number of examples to

review in each batch, and 3) the need for a threshold to stop the review process.35

To overcome these problems we have developed a new method and applied it in

a second set of experiments. This new method assumes that all the label noise

examples are selected as support vectors of a TCSVM, and builds another noise

free classifier, which is used to select the potential noise examples in the support

vector examples selected in the first step. This leads to a significantly reduced40

number of examples to be reviewed to remove the label noise examples.

This paper shows that to correct label noise it is enough to review a subset

of the support vectors of a trained TCSVM classifier. We re-labeled the noise

examples in the support vectors with the help of a human expert. The validity of

this approach is demonstrated on four datasets (UCI letter recognition, MNIST45

digit dataset, Wine quality dataset [16], and Wisconsin Breast Cancer dataset)

that contain artificially introduced label-noise. The experimental results show

that up to 99%, as shown in Table 6, of the incorrectly assigned labels in the

training set are selected as support vectors of an SVM classifier. Using our

proposed approach the number of examples to be reviewed can be drastically50

reduced. The paper is organized as follows. A discussion of previous work

related to label noise error is presented in Section 2. The intuition behind our

work and the algorithm are explained in Section 3. A detailed description of the

experiments and a performance comparison with the probabilistic based method

proposed in [6] are presented in Section 4. Section 5 contains our conclusions.55

2. Related Work

There are many different approaches to identify and remove mislabeled (label

noise) examples that have been explored in the literature. The intuition behind

a few of the methods are closely related to our work, i.e., in targeting the

3

important examples, but differ in the criterion used to define importance. The60

criterion used is information gain in the work by Guyon et al. [4], distance to the

separating hyperplane in the work by Rebbapragada et al. [5], and probability

in the work by Rebbapragada [6], and Brodley et al. [17]. In the work by Guyon

et al. [4], a method was proposed to select or reduce the number of examples

instead of using all the examples for training the classifiers. The examples65

were manually verified after being put in decreasing order by an information

gain criteria to find the most important and potentially mislabeled examples.

The examples which produced more information gain were more useful to the

classifier, as well as more suspicious. The main idea of this method is similar

to our approach. The examples were reviewed based on the information gain70

criteria and in our approach the criteria is implicitly defined by the large margin

principle. We differ from [4] in classifier(s), how we rank examples, the strict use

of human in the loop and analysis of the number of trials to remove examples

and what percentage of mislabels can be found for removal. In the work by

Rebbapragada et al. [5], examples were selected for labeling in an active learning75

framework using an SVM classifier. The unlabeled examples which lie close

to the separating hyperplane were selected for labeling. The intuition of this

method is very close in principle to our method, but we are different in the

following: our examples are labeled and we only examine the support vector

examples. The examples selected for labeling in [5] may or may not become a80

support vector and online training for large datasets is time consuming. The

method of Rebbapragada [6] and Brodley et al. [17] have similarities to our

proposed approach. They classified the training data from the classifier created

using SMO in Weka [18] and generated a probability with the classification [19].

Then the examples which received low probability were verified by the labeler.85

The examples are not necessarily support vectors and depending on where the

probability threshold for reviewing examples lies, some support vectors on the

wrong side of the boundary may be ignored. We compare with this work below.

A few more methods are related to our work, but their approach is different.

In the work by Gamberger et al. [7], a complexity measure was defined for the90

4

classifier and a weight was assigned to each example. The method is iterative

and in each round of the iteration the example with the highest weight is se-

lected. The selected example is examined for label noise, if its weight is greater

than the threshold. Our method is also iterative but the number of rounds

is independent of the number of noise examples and also does not require any95

threshold. In the method of Brodley and Friedl [8], an automatic noise removal

technique that also removes good examples was introduced. It increases the

classifier accuracy, but may miss a number of mislabels which is problematic if

there is a small class of interest. In the method of Zhu et al. [9], a rule based

method was proposed to distinguish exceptions and mislabeled examples. The100

intuition behind the method in [9] is similar to the method in [8], but it can

be applied for distributed, large scale datasets. The dataset was divided into

subsets and rules were generated for all the subsets. Examples in each subset

were classified by the rules generated from all the subsets. The assumption is

that the mislabeled examples were misclassified by more rules than exceptions.105

We do not consider exceptions in our method, but our method can be applied

independently in each location of a distributed large scale dataset as long as

a sufficient number of positive and negative examples is present in each loca-

tion. The method of Muhlenbach et al. [10] used geometrical structure to find

the mislabeled examples. The Relative Neighborhood graph of the Toussaint110

method was used to construct a graph. An example is considered as bad or

doubtful if its proportion of connections with examples of the same class in the

graph is smaller than the global proportion of the examples belonging to its

class. This method is closely related to our method, because in both methods

examples which are closest to examples from other classes are suspected, but the115

geometry considered in this method is local whereas in our method the global

position of all examples are considered at the same time. A kernel based method

was proposed by Valizadegan and Tan [11] for this problem. In this method,

a weighted k nearest neighbors (kNN) approach was extended to a quadratic

optimization problem. The expression to be optimized depends only on the120

similarity between the examples and hence can also be solved by projecting the

5

attributes into higher dimensions with the help of a kernel. The examples whose

labels were switched to maximize the optimization expression were considered

mislabeled. This method is similar to our method in using the optimization

function, but the objective of the optimization function is different. In the work125

by Rebbapragada and Brodley [12] and Rebbapragada et al. [13], examples are

clustered pair wise and a confidence is assigned to each example using the Pair

Wise Expectation Maximization (PWEM) method. The classifiers which take a

confidence value as input instead of labels can make use of this information. A

confidence measure can also be calculated using our method, but the criterion130

used is different.

The other approach to solve this problem is to mitigate the effect of the

label noise examples on the classifier. In the Adaboost learning algorithm, the

weights of the misclassified instances are increased and weights of correctly clas-

sified instances are decreased. This will create a group of base classifiers which135

correctly predict the examples that have large weights. The work of Ratsch

et al. [20] and Dietterich [21] show that AdaBoost tends to overfit in the pres-

ence of mislabeled examples. In order to avoid building base classifiers for noisy

examples, a method was proposed by Cao et al. [22] to reduce the weights of

the noisy examples using kNN and Expectation Maximization methods. In the140

work of Biggio et al. [23], Stempfel and Ralaivola [24] and Niaf et al. [25], the

SVM problem formulation was modified to handle the label noise problem. In

the work of Biggio et al. [23] the optimal decision surface was obtained in the

presence of label noise by correcting the kernel matrix of the SVM. The correc-

tion reduces the influence of any single data point in obtaining the separating145

hyperplane. The method in [24] assumes that noise free slack variables can be

estimated from the noisy data and the mean of the newly defined non-convex

objective function was the noise-free SVM objective function. The method in

[25] estimates the probability of each data point belonging to the prescribed

class. These probabilities were then used to adjust a slack variable that gives150

some flexibility to the hard constraints given in the initial optimization problem

using a standard SVM. In their experiments, the probabilities were generated

6

using Platt’s scaling algorithm [19] and a function to measure the distance to

the boundary. These methods handle noise and create classifiers in a single

step, but our method is strictly a preprocessing step to remove the label noise155

examples before creating any classifier with the training data.

The basic principle of creating a large margin between data from two classes

was extended to data from only one class in the work of Schlkopf et al. [26].

The method proposed in the work of Schlkopf et al. [26] is referred as OCSVM.

OCSVM finds a small region that encloses most of the data, and the examples160

that fall outside this region are considered outliers. In the work of Lukashevich

et al. [27], Das et al. [28] and Mourao-Miranda et al. [29], OCSVM was used for

outlier detection. The method in Lukashevich et al. [27] used OCSVM to detect

outliers in image training sets. The method in [28] used OCSVM to remove the

outliers in sensor data in a system where the data was distributed across different165

sites. The method in [29] successfully applied OCSVM on the patterns of fMRI

response to find depressed patients. The patterns of the depressed patients were

classified as outliers and separated from the normal patients using OCSVM. We

considered the mislabeled examples as outliers for the labeled class data, and

tested the performance of OCSVM in classifying the label noise examples as170

outliers.

Comparing to a probabilistic approach. In the dissertation work by [6] several

methods (SMO, Naive Bayes, Logistic Regression, Nearest neighbor, Bagging

and Boosing) were compared for Iterative Correction of Class Noise (ICCN). The

result shows that SMO is one of the best performing confidence based methods175

and is close in principle to our method, so we choose to compare our method

with the SMO confidence based method. The idea is to review the examples

in batches and have the reviewer choose the stopping criteria. However, in

their experiments they stop when the total number of reviewed examples is

equal to the known number of label noise examples present in the dataset.180

We tested this method on the four datasets (UCI character recognition, MNIST

digit recognition, Wine quality, and Wisconsin Breast cancer) following the same

7

experimental set up used to test our method, which is explained in Section 4.

The important difference between our approach and [6] is that we claim label

noise examples have a high probability of being selected as support vectors185

and review only the subset consisting of the support vectors. The method in

[6] reviews all the examples (does not differentiate support vectors and non-

support vector examples) based on their probability of classification. The other

differences are as follows: (a) we select the examples based on a two stage process

(b) there is no threshold on the number of examples to be reviewed in a batch190

and (c) no stopping criteria is required. Based on the experimental results

we show that our method produces consistent results for different parameter

selection methods. Stopping criteria is an important parameter especially when

we don’t know the amount of noise in the data, and our method does not require

this parameter.195

3. Algorithm

Our algorithm exploits the theory behind support vector machines. The

dual of the optimization problem created by an SVM is typically solved because

it is efficient for high dimensional features and kernel trick can easily be applied

to the solution [1]. The SMO-type solver [30, 31], is a computationally efficient

way to find the boundary for a training set using an SVM. The dual formulation

is

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjK(xi,xj)αiαj , (1)

where N is the number of training examples, the yi ∈ [−1, 1] are the class labels,

xj is a d dimensional example, K(·) is the kernel and αi is a Lagrange multiplier.

Equation (1) is subject to two constraints

αi ≥ 0,∀i, (2)

N∑
i=1

yiαi = 0. (3)

8

Now it turns out that αi = 0 for examples that are not needed for the decision

boundary. So, only support vectors αi > 0 are used to create the decision

boundary. This means two things in this work. First, we only need to look at

the labels of support vectors. The other labels are irrelevant in the sense that200

they do not affect the decision made on test examples. Second, when people

find an example difficult to label, one which they are likely to mislabel, it is

likely to be a border example near examples that make up the support vectors

and be a support vector itself. Also, if an adversary wants to affect decisions

by changing labels they must focus on the support vectors.205

Another argument for the observation that label noise examples become

support vectors is supported by the optimization procedure for SVM parameters

[32]. It is reasonable to assume that the mislabeled examples are mixed in with

the correctly labeled examples. In such cases, the optimization process of SVMs

creates a hyperplane which carves a precise boundary to separate the examples210

from two classes. These hyperplanes include the mislabeled examples as support

vectors. Hence, by validating the support vectors using an expert’s knowledge,

mislabeled examples can be removed. The process can be iteratively applied to

potentially remove all label-noise examples. The algorithm is described in Table

1.215

1. Mark all the training examples as not verified

2. Train an SVM classifier using the training examples

3. Have an expert validate all the support vectors marked as not verified:

(a) Change the labels of the mislabeled examples in the support vectors

(b) Mark all the support vector examples as verified

4. Repeat steps 2 and 3 until no label error is found

Table 1: Algorithm to verify the hypothesis that the label noise examples are captured in the

support vectors.

It can be observed from the experimental results that a classifier with label

noise examples has a large number of support vector examples. Reviewing all

9

1. Create an empty set: SV set

2. Create an empty set: Non SV set

3. Create Classifier A using all the examples in the dataset

4. Separate the SVs of Classifier A from the dataset and add them to SV set and add all the

remaining examples to Non SV Set

5. Create Classifier B using the examples in Non SV Set

6. Test the examples in SV Set using the Classifier B and rank the mis-classified examples based

on their probability of classification

7. Have an expert validate the previous unseen examples in SV Set based on the ranking ob-

tained in Step 6

8. Repeat the Steps 2 to 7 until no label noise example is found in Step 7

Table 2: The proposed algorithm to efficiently target the label noise examples in the support

vectors.

the support vector examples to find the label noise examples is tedious. So, we

have developed a new method which efficiently targets the label noise examples

in the support vectors of the TCSVM. If most of the label noise examples are220

selected as support vectors then it is possible to create a noise free classifier using

the non-support vector examples. Though the classifier created using only these

non-support vector examples might not perform the best on test data, we show

by experiments that it can be used to target the label noise examples. The idea

is to measure the distance to the boundary, created by a presumably noiseless225

model, of the support vector examples and use those with low probability in

a class, which are, typically, on the wrong side of the decision boundary, as

top candidates for relabeling. We show this reduces the number of examples to

examine in Section 4. The detailed steps of this method are given in Table 2.

4. Experiments230

We report results for two sets of experiments in this section. The first set of

experiments is to show that label noise examples have high probability of being

selected as support vectors. To show this we tested the performance of OCSVM,

10

TCSVM and their combination. The experiments were performed as described

in the algorithm in Table 1. In the combination experiment, the support vectors235

of the OCSVM and the TCSVM are combined at each round until the support

vectors of both the classifiers are free of label noise examples. The second set

of experiments is to show the performance and the parameter independence of

our new method in selecting the subset of label noise examples in the support

vectors. The experiments for the new method were performed as shown in the240

algorithm in Table 2. We also compared the performance of the new method

with the method in [6]. We refer to our novel method as ALNR (Active Label

Noise Removal) and the method in [6] as ICCN SMO.

We did experiments with four different datasets widely used in the ma-

chine learning community: the UCI Letter recognition dataset, the MNIST245

digit dataset, wine quality dataset [16], and Wisconsin Breast cancer dataset.

The UCI letter recognition dataset has around 700 examples for each letter (A-

Z) and each example is represented by a 16 dimensional feature vector. The

MNIST digit recognition dataset has around 6000 examples for each digit (0-

9) and each example is represented by a 784 dimensional feature vector. We250

performed some exploratory experiments and selected 3 letters (H, B and R)

from the UCI letter recognition dataset which are the most likely to be con-

fused. In the work by [33], it was stated that the digits 4, 7 and 9 in the

MNIST digits recognition dataset had the most confusion among them, so these

three digits were selected. We performed the first set of experiments with these255

three selected letters and digits from the UCI and MNIST datasets, respectively.

The wine quality dataset has around 1100 examples for the red wine class and

3150 examples for the white wine class and each example is represented by a

12 dimensional feature vector. The Wisconsin Breast cancer dataset has 212

examples for the malignant class and 357 examples for the benign class and260

each example is represented by a 30 dimensional feature vector. The second set

of experiments were performed with all four datasets. The experiments were

done using scikit-learn python machine learning library ([34]) which uses the

LIBSVM library [35] for SVM classification.

11

UCI Letter Recognition Dataset

Experiment #
Class X Class Y

Letter # CLE # MLE # TE Letter # CLE # MLE # TE

1 H 450 50 100
B 225 25 50

R 225 25 50

2 B 450 50 100
R 225 25 50

H 225 25 50

3 R 450 50 100
H 225 25 50

B 225 25 50

MNIST Digit Recognition Dataset

Experiment #
Class X Class Y

Digit # CLE # MLE # TE Digit # CLE # MLE # TE

4 4 900 100 500
7 450 50 250

9 450 50 250

5 7 900 100 500
9 450 50 250

4 450 50 250

6 9 900 100 500
4 450 50 250

7 450 50 250

Wine Quality Dataset

Experiment #
Class X Class Y

Wine Type # CLE # MLE # TE Wine Type # CLE # MLE # TE

7 Red 450 50 200 White 450 50 200

Wisconsin Breast Cancer Dataset

Experiment #
Class X Class Y

Type # CLE # MLE # TE Type # CLE # MLE # TE

8 Malignant 90 10 30 Benign 90 10 30

Table 3: The number of examples used in each of the experiments at 10% noise level. CLE -

correctly labeled examples, MLE - mislabeled examples, TE - test examples. The number of

examples correspond to the letter or digit or wine type in the same row under the same class.

The mislabeled examples in Class X are labeled as Class Y and vice-versa.

Figure 1: The sampling process of examples for an experiment

12

In each experiment the dataset was divided into two classes: X and Y. For265

example, in the first experiment using the UCI letter recognition dataset letter

H was considered as class X and letters B and R were considered as class Y.

In the second experiment the letter B was considered as class X and the letters

H and R were considered as class Y. In the third experiment the letter R was

considered as class X and the letters H and B were considered as class Y. For270

OCSVM experiments only the class X examples were used. The testing examples

to evaluate the classifier performance were sampled first from each class. The

examples to test our algorithm were sampled from the rest of the examples in

the dataset as follows: randomly sample 500 examples from class X and relabel

50 of them as class Y, randomly sample 250 examples from each letter in class275

Y and relabel 25 of them from each letter to class X. An example sampling

process at noise level of 10% is shown in Figure 1. The dataset partition for

each experiment at noise level of 10% is captured in Table 3. The number

of correctly labeled and mislabeled examples were changed proportionately at

different noise levels.280

The same procedure was applied in testing the MNIST dataset, but the num-

ber of examples used was different. With a large number of examples available

for each class in the MNIST dataset, we used 1000 examples for both classes.

Class X had 900 correctly labeled examples and 100 noise examples (50 from

each digit in class Y). Class Y had 900 correctly labeled examples (450 from each285

digit) and 100 noise examples from the digit in class X. The wine quality dataset

has only 2 classes: red and white wines. Class X is formed from 450 correctly

labeled red wine examples and 50 incorrectly labeled white wine examples, and

Class Y is formed from 450 correctly labeled white wine examples and 50 in-

correctly labeled red wine examples. The Wisconsin Breast cancer dataset has290

only 2 classes: malignant and benign cells. Class X is formed from 90 correctly

labeled malignant cell examples and 10 incorrectly labeled benign cell examples,

and Class Y is formed from 90 correctly labeled benign cell examples and 10

incorrectly labeled malignant cell examples. In order to avoid bias from the

examples chosen in any one experiment we repeated each experiment in Table295

13

3, 30 times with different randomly sampled examples. All the reported results

for the first set of experiments are the average of the 180 experiments (90 each

for UCI Letter and MNIST Digit recognition datasets) and the results for the

second set of experiments are the average of the 240 experiments (90 each for

UCI Letter and MNIST Digit recognition datasets, 30 for Wine Quality dataset300

and 30 for Breast cancer dataset).

In ICCN SMO the examples are reviewed in batches and the review is

stopped when the number of reviewed examples is equal to the amount of label

noise examples in the dataset. The number of examples to be reviewed in a

batch was arbitrarily set to 20. In our implementation of ICCN SMO some305

changes were made to the experimental setup to make a fair comparison. The

number of examples to be reviewed in a batch was varied between datasets. We

choose 20 examples for the Breast cancer dataset, 30 examples for the UCI and

Wine Quality datasets and 50 examples for the MNIST dataset. These numbers

were chosen in proportion to the number of examples in the dataset. Also, the310

review process was extended to between 20 and 25% more examples than the

amount of noise in the dataset. For both methods the criteria for review is

based on probability.

The feature values of the data were scaled between -1 and 1 and classi-

fiers were built using linear and RBF kernels. Parameter selection was done315

independently using 5-fold cross validation for each random choice of training

data. The range of the RBF kernel parameter “γ” was varied in multiples of

5 from 0.1/(number of features) to 10/(number of features). In addition, two

other “γ” values 0.01/(number of features) and 0.05/(number of features) were

tested. The range of the SVM cost parameter “C ” was also varied between 1320

and 25 in steps of 3.

We first discuss the results for the first set of experiments on the UCI Letter

and MNIST character recognition datasets. The overall percentage of label

noise examples selected as support vectors on the UCI and MNIST datasets in

selecting the label noise examples as support vectors over 30 experiments at the325

10% noise level is 85.75% and 85.79% for OCSVM with the linear and RBF

14

kernels respectively and 99.55% for TCSVM with both the linear and RBF

kernels. The detailed results for one of the experiments using OCSVM and

TCSVM are shown in Tables 4 and 5, respectively, and the overall performance

is shown in Table 6. It was observed that the majority of the noise examples330

were removed in the 1st round of iterations and very few noise examples were

removed in the subsequent rounds, in all experiments. It is clear that up-to 45%

of the examples can be support vectors when 10% of the examples have incorrect

noisy labels noise examples in the dataset as shown in Table 6. Generally, more

complex boundaries will entail more support vectors. The number to be looked335

at may not scale well as the training set becomes large in some cases.

We also performed another experiment in which the support vectors of both

one-class and two-class classifiers (only class X support vectors) at each iteration

were added together and examined for the presence of label noise examples. For

a linear kernel, this resulted in an overall improvement in finding mislabeled340

examples of around 1.5% and for the RBF kernel the improvement was only

around 0.1%. The results of this experiment are shown in Table 6. The perfor-

mance of OCSVM in selecting the label noise examples as support vectors for

different values of “µ” is shown in Table 7. Again, we see that the number of

support vectors can be a significant percentage of the total number of examples345

which might be problamatic for large data sets, if the number of support vectors

scales linearly with training set size.

Figure 2: Example misclassification results. The images on the left and right are labeled

as 4 and 9 respectively in the dataset. The image on the left is correctly identified as a

mislabeled example, whereas the image on the right is incorrectly identified as a correctly

labeled example.

TCSVM using the RBF kernel failed to find 15 mislabeled examples in total

over 90 (3 experiments * 30 repetitions) MNIST dataset experiments. Two

examples missed by the RBF kernel are shown in Figure 2. The image on the350

15

Iteration #
Cumulative # SV

reviewed

Cumulative #

Label noise

examples removed

RBF Kernel

parameter (γ)

SV in the

iteration

1 503 79 0.0014 503

2 546 87 0.0005 465

3 550 89 0.0005 460

4 552 90 0.0005 460

5 553 90 0.001 458

Table 4: The result of a single run of experiment 4 with an OCSVM classifier on the MNIST

data at the 10% noise level. This table shows the iteration number, the cumulative number

of support vectors to be reviewed until that iteration, the cumulative number of label noise

examples selected as support vectors until that iteration, the kernel parameters used for that

iteration and the number of support vectors selected in that iteration by the OCSVM classifier.

The parameter “µ” was set to 0.5.

Iteration
Cumulative #

SV reviewed

Cumulative #

Label noise

examples

removed

Parameter “

C ”

RBF Kernel

parameter

(γ)

Training

accuracy in

%

1 841 99 25 0.001 88.8

2 848 100 22 0.005 98.95

3 849 100 25 0.005 98.75

Table 5: The result of a single run of experiment 4 with a TCSVM classifier on the MNIST data

at 10% noise level. This table shows the iteration number, the cumulative number of support

vectors to be reviewed after that iteration, the cumulative number of label noise examples

selected as support vectors until that iteration, the kernel parameters used for that iteration

and the training accuracy of the classifier using that kernel parameter in that iteration. In

this case all noise examples were removed.

16

Dataset

Linear Kernel

OCSVM TCSVM Combined

% outliers
% noise

removed

% support

vectors

% noise

removed

% support

vectors

% noise

removed

MNIST 55.05 89.46 42.91 98.23 57.26 99.67

UCI 55.02 78.33 48.80 97.92 53.67 99.31

Overall 55.04 85.75 44.87 98.13 56.06 99.55

Dataset

RBF Kernel

OCSVM TCSVM Combined

% outliers
% noise

removed

% support

vectors

% noise

removed

% support

vectors

% noise

removed

MNIST 55.23 91.21 45.56 99.85 40.59 99.95

UCI 54.93 74.95 42.80 99.78 33.69 99.95

Overall 55.13 85.79 44.64 99.83 38.29 99.95

Table 6: The average performance over 180 experiments on both the MNIST and UCI data

sets and the overall performance at 10% noise level. For OCSVM these results were obtained

when using the value 0.5 for parameter “µ”

“µ”
MNIST UCI

% outliers
% noise

removed
% outliers

% noise

removed

0.3 36.19 77.17 34.69 53.86

0.4 45.80 85.4 44.88 64.15

0.5 55.23 91.21 54.93 74.95

0.6 64.44 94.92 64.14 80.95

0.7 73.43 97.51 73.29 87.15

0.8 82.44 99.17 82.39 93.11

Table 7: The average performance of OCSVM with RBF kernel for different “µ” values over

180 experiments on both the MNIST and UCI data set at 10% noise level.

17

Extensive parameter selection experiment

% Noise level
Linear Kernel RBF Kernel

% examples

reviewed

% noise

removed

% examples

reviewed

% noise

removed

10 16.40 93.56 13.34 95.84

20 26.40 93.92 23.47 96.01

30 37.26 93.99 34.08 95.69

40 50.64 94.32 48.20 95.72

50 70.03 94.89 71.11 96.22

Table 8: The average performance of ALNR in selecting the label noise examples for labeling

over 240 experiments on all the data sets for the extensive parameter selection experiment.

Random parameter selection experiment

% Noise level
Linear Kernel RBF Kernel

% examples

reviewed

% noise

removed

% examples

reviewed

% noise

removed

10 16.94 93.76 18.84 96.06

20 27.15 94.21 29.35 96.30

30 38.12 94.10 40.09 96.30

40 51.16 94.31 51.89 96.35

50 70.21 95.03 73.78 96.67

Default parameter selection experiment

% Noise level
Linear Kernel RBF Kernel

% examples

reviewed

% noise

removed

% examples

reviewed

% noise

removed

10 16.40 93.41 16.37 92.76

20 26.34 93.81 25.82 92.85

30 37.11 93.90 35.36 92.74

40 50.28 94.23 46.70 92.67

50 70.05 94.85 70.17 91.46

Table 9: The average performance of ALNR in selecting the label noise examples for labeling

over 240 experiments on all the data sets for the Random and Default parameter selection

experiments.

18

left is mislabeled as a 4 in the dataset and its correct label is 9. By looking at

this image we believe that it is a reasonable miss by our method, since the digit

is a bit ambiguous. The image on the right is mislabeled as 9 in the dataset

and its correct label is 4. Though it appears clear to us from the image that

the digit is a 4, our method failed to identify it as mislabeled.355

We now discuss the results for the second set of experiments on all four

datasets. For the second set of experiments the total number of examples were

kept the same but the noise level was varied from 10% to 50%. For example, for

the MNIST digit recognition dataset the number of correctly labeled examples

in Class X was 700 and incorrectly labeled examples was 300 at a noise level360

of 30%. In addition to finding the performance in removing the label noise ex-

amples, we also report the accuracy of the classifier while cleaning the dataset.

When the examples were reviewed and re-labeled, intermediate classifiers were

built using the new labels of the examples. The parameter estimation for these

intermediate classifiers was done following the procedure explained earlier. The365

performance of the intermediate classifiers was estimated based on the accuracy

of classification on the test set examples. The same test examples were used

in all the 30 repetitions of each experiment and the average performance is re-

ported. Classification performance was estimated with an RBF kernel classifier,

and its “C ”, and “gamma” are set to 1 and 1/(number of features) respectively.370

Estimating the performance after reviewing every example is computationally

intensive, so performance was estimated at regular intervals of about 1/10 of the

amount of noise in the data. For example, in one of the UCI experiments with

30% label noise, performance was estimated after reviewing every 30 examples,

whereas for the MNIST experiment with 30% label noise, performance was es-375

timated after reviewing every 60 examples. We also tested two non-character

datasets (wine quality dataset and Wisconsin Breast cancer dataset) for this ex-

periment. The cumulative results of this extensive parameter selection method

over all the datasets at different noise levels is shown in Table 8.

We tested the parameter dependence of ALNR in two ways: with random380

parameters and with default parameters. In each round of the random param-

19

eter experiments random values for “C ” and “gamma” were uniformly chosen

from the range of values mentioned earlier for both the linear and RBF kernels.

In the default parameter experiments values for “C ” and “gamma” were set to

1 and 1/(number of features) respectively. The cumulative results of these two385

experiments over all the datasets at different noise levels are shown in Table

9. The detailed results of each experiment are shown in Tables 10 and 11 and

in Figures 3 to 10. We refer to the extensive parameter selection method as

’Regular’, the random parameter selection method as ’Random’ and the default

parameter selection method as ’Default’ in all tables and figures.390

The values in the Tables 8, 9, 10 and 11 were obtained by averaging the

final results (i.e, when each of the experiment completes) of all the experiments.

Ideally each point in the graph in the Figures 3 to 10 should be the average

of all the experiments, but the number of examples reviewed in each of the

experiments were different. So if a value was not available for averaging for an395

experiment, its final result was used to get the contribution of that experiment.

For example, in one experiment on MNIST dataset with linear kernel with 30%

label noise examples, 95.8% of the label noise examples were removed by review-

ing 36.9% of the examples. To calculate the average noise removal performance

after reviewing 39% of examples, the value 95.8% was used for this experiment.400

A similar procedure was followed for computing the average accuracy of the

classifiers. This was done to reduce bias from any of the experiments if the

number of experiments available to calculate the average is small. Due to this

small difference in the calculation of the performance values between the Tables

8, 9, 10 and the graphs in the Figures 3 to 8, the last point in each of the graph405

might not exactly equal to the values in the Tables. Due to the experimental

setup this difference is unavoidable. At 50% noise level, only around 55% of the

ICCN SMO experiments reviewed up to 60% of examples, in contrast around

96% of ALNR experiments reviewed up to 60% of examples. Due to large vari-

ation in the results of the ICCN SMO experiments the average results beyond410

60% of reviewed examples might be biased by the results of few experiments.

For this reason we are not comparing the performance of these two methods at

20

UCI Letter Recognition Dataset

Noise Level %

Kernel: Linear Kernel: RBF

Regular Random Default Regular Random Default

ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO

10 90.48 78.18 90.91 78.07 90.04 77.84 95.09 93.14 94.50 89.54 88.02 80.71

20 90.77 86.92 91.44 86.88 90.50 86.79 95.39 94.55 94.87 91.33 88.38 88.07

30 90.80 90.98 91.40 91.02 90.53 90.97 94.39 95.42 94.56 93.34 87.98 91.58

40 91.02 93.20 90.94 93.24 90.74 93.25 93.80 95.87 94.69 91.88 87.76 93.65

50 92.09 39.42 92.25 38.17 91.98 35.48 92.98 55.96 93.74 46.80 82.08 34.26

MNIST Digit Recognition Dataset

Noise Level %

Kernel: Linear Kernel: RBF

Regular Random Default Regular Random Default

ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO

10 94.08 70.82 94.25 59.01 94.07 71.38 95.75 86.69 96.36 78.16 94.12 93.88

20 94.63 77.65 94.75 68.85 94.59 78.60 95.91 90.47 96.62 85.33 94.10 96.65

30 94.69 81.55 94.55 74.64 94.66 82.49 95.80 86.68 96.72 87.86 94.09 97.84

40 95.12 75.57 95.14 70.58 95.12 81.54 96.15 81.91 96.79 87.84 94.32 98.58

50 95.49 67.90 95.68 65.56 95.49 72.39 97.33 43.45 97.70 53.05 95.90 35.22

Wine Quality Dataset

Noise Level %

Kernel: Linear Kernel: RBF

Regular Random Default Regular Random Default

ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO

10 99.17 99.37 99.23 99.33 99.17 99.47 99.00 98.73 99.10 98.30 98.93 99.37

20 98.77 99.33 98.87 99.28 98.75 99.30 98.72 99.13 98.78 99.22 98.62 99.27

30 99.00 99.46 98.92 99.48 98.91 99.48 98.91 99.54 98.99 99.51 98.69 99.47

40 99.19 99.64 99.27 99.64 99.17 99.64 99.03 96.35 99.24 96.60 98.99 99.64

50 99.30 32.12 99.29 48.15 99.30 31.80 99.28 51.01 99.41 45.89 95.91 34.10

Wisconsin Breast cancer Dataset

Noise Level %

Kernel: Linear Kernel: RBF

Regular Random Default Regular Random Default

ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO

10 96.00 91.33 94.50 88.17 95.33 94.17 94.00 91.00 95.00 86.83 92.33 93.67

20 95.67 95.08 96.08 93.92 95.58 97.17 94.83 94.00 96.00 93.50 93.83 96.42

30 96.00 94.61 97.06 93.17 96.50 97.17 95.61 96.17 96.28 92.78 93.83 98.28

40 95.50 83.54 95.21 79.92 95.25 83.96 94.96 85.33 93.88 85.12 85.12 92.42

50 96.97 62.07 95.77 61.73 96.63 51.43 96.13 44.80 96.07 57.93 77.03 40.00

Table 10: Average noise removal performance of ALNR and ICCN SMO on all the datasets.

The performance is the average over 90 experiments on the UCI Letter and MNIST Digits

datasets, and 30 experiments on the Wine Quality and Breast cancer datasets. Regular, Ran-

dom and Default refer to the extensive, random and default parameter selection experiments

respectively. All the results are in percentage of noise examples reviewed versus all examples

reviewed.

21

UCI Letter Recognition Dataset

Noise Level %

Kernel: Linear Kernel: RBF

Regular Random Default Regular Random Default

ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO

10 19.58 12.00 19.78 12.00 19.59 12.00 14.02 12.00 23.32 12.00 20.42 12.00

20 28.83 24.00 29.09 24.00 28.74 24.00 24.57 24.00 34.02 23.43 29.74 24.00

30 37.62 36.00 37.87 36.00 37.59 36.00 35.76 36.00 44.20 35.27 38.93 36.00

40 48.56 48.00 48.53 48.00 48.49 48.00 49.66 48.00 56.27 46.13 50.84 48.00

50 71.20 39.93 71.37 38.73 71.20 35.83 69.26 41.37 74.56 37.40 66.76 32.10

MNIST Digit Recognition Dataset

Noise Level %

Kernel: Linear Kernel: RBF

Regular Random Default Regular Random Default

ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO

10 15.82 12.50 16.64 12.50 15.81 12.50 13.35 12.47 17.52 12.44 15.25 12.50

20 26.20 25.00 27.36 25.00 26.15 25.00 23.33 24.92 28.44 25.00 24.71 25.00

30 38.28 37.50 39.60 37.44 38.05 37.50 33.36 37.42 39.63 37.47 34.39 37.50

40 53.44 47.36 54.27 46.89 52.89 48.44 48.47 49.94 51.08 49.47 45.32 50.00

50 69.10 56.50 69.46 55.83 69.33 58.58 72.03 43.28 73.68 44.47 72.08 37.31

Wine Quality Dataset

Noise Level %

Kernel: Linear Kernel: RBF

Regular Random Default Regular Random Default

ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO

10 10.90 12.00 10.91 12.00 10.91 12.00 11.02 12.00 14.11 12.00 11.04 12.00

20 20.85 23.70 20.83 23.80 20.83 23.70 20.88 24.00 21.35 23.90 21.13 23.80

30 30.63 35.80 30.65 35.80 30.59 35.80 32.89 35.80 30.97 35.80 30.74 35.90

40 40.89 47.00 40.80 47.10 40.91 47.10 41.50 45.90 43.28 46.10 41.17 47.20

50 72.08 23.90 71.46 32.10 71.20 22.70 71.41 34.30 72.29 31.50 70.85 24.80

Wisconsin Breast cancer Dataset

Noise Level %

Kernel: Linear Kernel: RBF

Regular Random Default Regular Random Default

ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO

10 13.77 12.50 13.47 12.50 13.65 12.50 14.58 12.50 15.03 12.50 15.70 12.50

20 23.58 25.00 23.42 25.00 23.65 25.00 24.02 25.00 26.73 25.00 23.92 25.00

30 34.43 37.50 35.12 37.50 34.45 37.50 36.35 37.50 38.00 36.58 33.88 37.50

40 46.45 47.67 49.07 48.00 45.48 45.00 51.87 46.00 53.43 46.00 53.52 47.33

50 70.32 52.42 69.20 54.33 68.75 50.00 69.38 39.50 72.77 49.75 60.58 40.58

Table 11: Average examples reviewed for ALNR and ICCN SMO on all the datasets. The

numbers shown are the average over 90 experiments on the UCI Letter and MNIST Digits

datasets and 30 experiments on the Wine Quality and Breast cancer datasets. Regular, Ran-

dom and Default refer to the extensive, random and default parameter selection experiments

respectively. All the numbers are in percentage of the total number of examples reviewed

versus the total number of examples in the dataset.

Dataset
Kernel: Linear Kernel: RBF

Regular Random Default Regular Random Default

ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO ALNR ICCN SMO

UCI-Letters 7.25 13.33 6.95 12.99 7.48 13.23 8.31 13.45 7.08 12.68 8.01 12.85

MNIST-Digits 11.76 17.89 11.79 18.20 12.50 17.77 7.00 16.80 6.75 16.23 7.98 16.89

Wine quality 4.15 11.87 4.03 11.78 4.31 12.57 4.55 12.67 3.92 11.97 4.42 12.44

Breast Cancer 5.22 4.88 5.03 4.75 5.38 4.96 4.33 4.47 3.81 4.52 4.67 4.75

Table 12: Average number of batches required for reviewing the datasets by ALNR and

ICCN SMO. The numbers shown are the average over all the experiments at all the noise

levels for each dataset.

22

the 50% noise level, but the performance results and graphs are included for

completeness.

Table 8 shows that ALNR with RBF kernel removes more than 95% of the415

label noise examples by reviewing around 8% more examples than the amount

of noise in the data. The linear kernel results in reviewing around 3% more

examples than the RBF kernel, but the amount of noise removed is 2% less.

From these experimental results it appears that RBF kernel is superior to the

linear kernel for removing the label noise examples. Comparing Tables 8 and 9,420

it can be observed that the noise removal performance of extensive and random

parameter selection experiments are similar, but around 5% fewer examples

need to be reviewed for the extensive parameter selection experiments with

RBF kernel. The noise removal performance of default parameter selection

experiments is around 1% and 3% less than the extensive parameter selection425

experiments with the linear and RBF kernels respectively.

From Figures 3 to 10 it can be observed that ICCN SMO appears to tar-

get examples that improve the performance of the algorithm better than the

examples targeted by ALNR at the 40% noise level in the UCI and Breast

cancer datasets. In contrast ALNR targets examples that improves the perfor-430

mance of the algorithm better than the examples targeted by ICCN SMO at

40% noise level in the Wine Quality dataset. The noise removal performance of

the ALNR is better than ICCN SMO in the MNIST Digit recognition dataset

with a Linear kernel. MNIST is a high dimensional dataset compared to the

UCI Letter recognition, Wine Quality and the Breast cancer datasets. Table435

10 shows that ANLR removes more noise than ICCN SMO for UCI, MNIST

and Breast cancer datasets except at the 40% noise level for the UCI dataset

and for the Breast cancer dataset with the RBF kernel. Table 11 shows that

the average difference in the number of reviewed examples between ALNR and

ICCN SMO is less than 3% except at the 10% noise level for UCI with linear440

kernel, where the difference is around 7%. For the Wine quality dataset both

ALNR and ICCN SMO removed an equal amount of noise and ALNR requires

less examples to be reviewed.

23

From Table 10, it can be observed that ALNR performance varies around

10% between the Regular, Random and Default parameter selection methods445

for the UCI dataset with an RBF kernel and for the Breast cancer dataset with

RBF kernel at 40% noise. For all other datasets the difference in performance

between different parameter selection methods is only around 2%. In compari-

son, ICCN SMO performance varies around 10% for the UCI dataset with the

RBF kernel and for the MNIST dataset with both the linear and RBF kernel450

and around 5% for the Breast cancer dataset with RBF kernel. This shows

that ALNR is robust to parameter selection, which is a useful criteria for large

datasets. In ICCN SMO examples are reviewed in batches, selecting the num-

ber of examples to be reviewed is a parameter and should be known apriori for

the dataset. This parameter is not required for ALNR.455

The results in Table 12 shows that ALNR requires fewer batches be reviewed

except for the Breast cancer dataset with a linear kernel in which the difference

is less than one batch. Both methods invoke the SVM solver iteratively to find

the support vectors for review, but in each round of the iteration ALNR invokes

the SVM solver twice whereas ICCN SMO invokes it only once. We used the460

LIBSVM implementation of the SVM solver in our experiments and the worst

case computational complexity of this SVM solver is O(n3) [36], where n is the

number of examples. If “k” is the number of rounds to review the dataset, then

O(kn3) is the computational complexity of both ALNR and our implementation

of ICCN SMO. The results in Table 12 shows that k << n.465

5. Conclusions

We proposed a method to remove label noise examples in the training data.

The method involves reviewing only a fraction of the training examples which

are selected using support vector machines. We experimentally showed that

label noise examples in the data are selected as outliers and the support vectors470

of the OCSVM and TCSVM, respectively. The experimental results show that

the performance of TCSVM is superior to OCSVM in selecting the label noise

24

examples as support vectors. TCSVM outperforms OCSVM in both the number

of label noise examples that can be removed (more) and the number of examples

to be reviewed (less). The combination of the two approaches produced marginal475

improvements. The experimental results on the UCI and MNIST character

recognition datasets show that TCSVM captures around 99% of label noise

examples with a review of around 45% of the labeled examples when the data

contains 10% label noise examples. We proposed a new method which reduces

the number of examples to be reviewed, and is robust to parameter selection.480

This method removes more than 95% of the label noise examples by reviewing

around 10% more examples than the amount of noise in the data. The average

difference in performance of this method between the parameters selected using

extensive cross validation method and the default parameter is within 1% for

the linear kernel and 3% for the RBF kernel. Future work might focus on485

evaluating our hypothesis and modifying our approach to label noise in multi-

class problems. This work may also be applied and evaluated in situations

where an adversary is trying to mislabel examples to modify the classifier for

their benefit.

Acknowledgement490

We thank UCI Machine learning repository for providing the data for this ex-

periment. Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository

(http://archive.ics.uci.edu/ml). Irvine, CA: University of California, School of

Information and Computer Science.

25

Figure 3: Comparison of ALNR and ICCN SMO for different parameter selection methods on

the UCI Letter recognition dataset using the Linear Kernel SVM. The figures on the left show

the noise removal performance at different noise levels and the figures on the right show the

accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.

26

Figure 4: Comparison of ALNR and ICCN SMO for different parameter selection methods on

the UCI Letter recognition dataset using the RBF Kernel SVM. The figures on the left show

the noise removal performance at different noise levels and the figures on the right show the

accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.

27

Figure 5: Comparison of ALNR and ICCN SMO for different parameter selection methods

on the MNIST Digit recognition dataset using the Linear Kernel SVM. The figures on the

left show the noise removal performance at different noise levels and the figures on the right

show the accuracy of the classifier on the specified test data after reviewing a fraction of the

dataset.

28

Figure 6: Comparison of ALNR and ICCN SMO for different parameter selection methods on

the MNIST Digit dataset using the RBF Kernel SVM. The figures on the left show the noise

removal performance at different noise levels and the figures on the right show the accuracy

of the classifier on the specified test data after reviewing a fraction of the dataset.

29

Figure 7: Comparison of ALNR and ICCN SMO for different parameter selection methods on

the Wine Quality dataset using the Linear Kernel SVM. The figures on the left show the noise

removal performance at different noise levels and the figures on the right show the accuracy

of the classifier on the specified test data after reviewing a fraction of the dataset.

30

Figure 8: Comparison of ALNR and ICCN SMO for different parameter selection methods on

the Wine Quality dataset using the RBF Kernel SVM. The figures on the left show the noise

removal performance at different noise levels and the figures on the right show the accuracy

of the classifier on the specified test data after reviewing a fraction of the dataset.

31

Figure 9: Comparison of ALNR and ICCN SMO for different parameter selection methods on

the Breast cancer dataset using the Linear Kernel SVM. The figures on the left show the noise

removal performance at different noise levels and the figures on the right show the accuracy

of the classifier on the specified test data after reviewing a fraction of the dataset.

32

Figure 10: Comparison of ALNR and ICCN SMO for different parameter selection methods on

the Breast cancer dataset using the RBF Kernel SVM. The figures on the left show the noise

removal performance at different noise levels and the figures on the right show the accuracy

of the classifier on the specified test data after reviewing a fraction of the dataset.

33

References495

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop on

Computational learning theory, pages 144–152. ACM, 1992.

[2] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20

(3):273–297, 1995.500

[3] V. Vapnik and S. Kotz. Estimation of dependences based on empirical data.

Springer, 2006.

[4] I. Guyon, N. Matic, and V. Vapnik. Discovering informative patterns and

data cleaning. Advances in knowledge discovery and data mining, In U.

M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, (Eds.):505

181–203, 1996.

[5] U. Rebbapragada, R. Lomasky, C. E. Brodley, , and M. A. Friedl. Gen-

erating high-quality training data for automated land-cover mapping. In

International Geoscience and Remote Sensing Symposium, volume 4. IEEE,

2008.510

[6] U. Rebbapragada. Strategic targeting of outliers for expert review. PhD

thesis, Tufts University, Medford, MA, 2010.

[7] D. Gamberger, N. Lavrac, and S. Dzeroski. Noise detection and elimination

in data preprocessing: experiments in medical domains. Applied Artificial

Intelligence, 14(2):205–223, 2000.515

[8] C. E. Brodley and M. A. Friedl. Identifying mislabeled training data.

Journal of Artificial Intelligence Research, 11:131–167, 1999.

[9] X. Zhu, X. Wu, and Q. Chen. Eliminating class noise in large datasets. In In

International Conference on Machine Learning, volume 3, pages 920–927,

2003.520

34

[10] F. Muhlenbach, S. Lallich, and D. A. Zighed. Identifying and handling

mislabelled instances. Journal of Intelligent Information Systems, 22(1):

89–109, 2004.

[11] H. Valizadegan and P. N. Tan. Kernel based detection of mislabeled training

examples. In In Proceedings of the Seventh SIAM International Conference525

on Data Mining, 2007.

[12] U. Rebbapragada and C. E. Brodley. Class noise mitigation through in-

stance weighting. In In 18th European Conference on Machine Learning,

pages 708–715. Springer, 2007.

[13] U. Rebbapragada, L. Mandrake, K. L. Wagstaff, D. Gleeson, R. Castano,530

S. Chien, and C. E. Brodley. Improving onboard analysis of hyperion images

by filtering mislabeled training data examples. In Aerospace conference,

pages 1–9. IEEE, 2009.

[14] S. Fefilatyev, M. Shreve, K. Kramer, L. Hall, D. Goldgof, R. Kasturi, and

H. Bunke. Label-noise reduction with support vector machines. In 21st535

International Conference on Pattern Recognition (ICPR), pages 3504–3508.

IEEE, 2012.

[15] K. N. Le. A mathematical approach to edge detection in hyperbolic-

distributed and gaussian-distributed pixel-intensity images using hyper-

bolic and gaussian masks. Digital Signal Processing, 21(1):162–181, 2011.540

[16] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, , and J. Reis. Modeling

wine preferences by data mining from physicochemical properties. Decision

Support Systems, 47(4):547–553, 2009.

[17] C. E. Brodley, U. Rebbapragada, K. Small, and B. Wallace. Challenges

and opportunities in applied machine learning. AI Magazine, 33(1):11–24,545

2012.

35

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-

ten. The weka data mining software: An update. SIGKDD Explorations,

11(1), 2009.

[19] J. Platt. Probabilistic outputs for support vector machines and comparisons550

to regularized likelihood methods. Advances in large margin classifiers, 10

(3):61–74, 1999.

[20] G. Ratsch, T. Onoda, and K. R. Muller. Soft margins for adaboost. Ma-

chine learning, 42(3):287–320, 2001.

[21] T. G. Dietterich. An experimental comparison of three methods for con-555

structing ensembles of decision trees: Bagging, boosting, and randomiza-

tion. Machine learning, 40(2):139–157, 2000.

[22] J. Cao, S. Kwong, and R. Wang. A noise-detection based adaboost algo-

rithm for mislabeled data. Pattern Recognition, 45(12):4451–4465, 2012.

[23] B. Biggio, B. Nelson, and P. Laskov. Support vector machines under ad-560

versarial label noise. Journal of Machine Learning Research-Proceedings

Track, 20:97–112, 2011.

[24] G. Stempfel and L. Ralaivola. Learning svms from sloppily labeled data.

In International Conference on Artificial Neural Networks, pages 884–893.

Springer, 2009.565

[25] E. Niaf, R. Flamary, C. Lartizien, and S. Canu. Handling uncertainties in

svm classification. In Statistical Signal Processing Workshop, pages 757–

760. IEEE, 2011.

[26] B. Schlkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.

Williamson. Estimating the support of a high-dimensional distribution.570

Neural computation, 13(7):1443–1471, 2001.

[27] H. Lukashevich, S. Nowak, and P. Dunker. Using one-class svm outliers

detection for verification of collaboratively tagged image training sets. In

36

International Conference on Multimedia and Expo, pages 682–685. IEEE,

2009.575

[28] K. Das, K. Bhaduri, and P. Votava. Distributed anomaly detection using

1-class svm for vertically partitioned data. Statistical Analysis and Data

Mining, 4(4):393–406, 2011.

[29] J. Mourao-Miranda, D. R. Hardoon, T. Hahn, A. F. Marquand, S. C.

Williams, J. Shawe-Taylor, and M. Brammer.580

[30] J. Platt. Fast training of support vector machines using sequential minimal

optimization. Advances in kernel methodssupport vector learning, 3, 1999.

[31] R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second

order information for training support vector machines. Journal of Machine

Learning Research, 6:1889–1918, 2005.585

[32] C. J. Burges. A tutorial on support vector machines for pattern recognition.

Data mining and knowledge discovery, 2(2):121–167, 1998.

[33] A. Borji, M. Hamidi, and F. Mahmoudi. Robust handwritten character

recognition with features inspired by visual ventral stream. Neural process-

ing letters, 28(2):97–111, 2008.590

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:

2825–2830, 2011.595

[35] C. C. Chang and C. J. Lin. Libsvm: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27,

2011.

[36] L. Bottou and C. J. Lin. Support vector machine solvers. Large scale kernel

machines, pages 301–320, 2007.600

37

	Introduction
	Related Work
	Algorithm
	Experiments
	Conclusions

